Error message

Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in menu_set_active_trail() (line 2405 of /home/hulijedw/public_html/includes/menu.inc).

Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria

Armine Hareyan's picture

Determining the concentration of carbon dioxide in the ancient atmosphere remains a critical hurdle to understanding Earth surface temperatures, compositional changes in atmospheric chemistry, and the evolution of Earth’s earliest biosphere.

Kah and Riding report the finding of petrographic fabrics in 1.2-billion-year-old carbonate strata that suggest the process of cyanobacterial calcification. When ambient atmospheric partial pressure of CO2 (pCO2) concentrations fall below roughly 10 times present atmospheric levels (PAL), cyanobacteria begin to use a combination of dissolved carbonate species (CO32- and HCO3-) in the photosynthetic production of organic matter. The cyanobacteria, however, must perform a series of biochemical gymnastics to utilize HCO3- in this process. As a byproduct of these biochemical changes, the pH of the microbial sheath rises dramatically and induces the precipitation of calcium carbonate minerals. Identification of these calcified sheaths in the geologic record thus place an upper limit on pCO2. Atmospheric concentrations of CO2 <10 times PAL in the Mesoproterozoic are significantly lower than previous estimates, and indicate the requirement of additional greenhouse gasses, such as methane, in the atmosphere to keep the oceans from freezing.-Geological Society of America

Add new comment